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Abstract As Bleher (J. Stat. Phys. 66(1):315–373, 1992) observed the free flight vector of
the planar, infinite horizon, periodic Lorentz process {Sn | n = 0,1,2, . . .} belongs to the
non-standard domain of attraction of the Gaussian law—actually with the

√
n logn scaling.

Our first aim is to establish his conjecture that, indeed, Sn√
n logn

converges in distribution to
the Gaussian law (a Global Limit Theorem). Here the recent method of Bálint and Gouëzel
(Commun. Math. Phys. 263:461–512, 2006), helped us to essentially simplify the ideas of
our earlier sketchy proof (Szász, D., Varjú, T. in Modern dynamical systems and applica-
tions, pp. 433–445, 2004). Moreover, we can also derive (a) the local version of the Global
Limit Theorem, (b) the recurrence of the planar, infinite horizon, periodic Lorentz process,
and finally (c) the ergodicity of its infinite invariant measure.

Keywords Lorentz process · Periodic configuration of scatterers · Infinite horizon ·
Corridors · Non-normal domain of attraction of the Gaussian law · Local limit law ·
Recurrence · Ergodicity

1 Introduction

The Lorentz process is the Z
d -covering of a Sinai billiard—in other words of a dispersing

billiard—given on T
d = R

d/Z
d . If the horizon is finite, i.e. the free flight vector ψ(x) is

bounded, then the Lorentz process is a most instructive model of the Brownian motion.

Dedicated to Ya.G. Sinai on the occasion of his seventieth birthday.

Research supported by the Hungarian National Foundation for Scientific Research grants No. T046187,
NK 63066 and TS 049835, further by Hungarian Science and Technology Foundation grant No. A-9/03.

D. Szász (�) · T. Varjú
Budapest University of Technology and Economics, Mathematical Intitute, Egry J. u. 1, 1111 Budapest,
Hungary
e-mail: szasz@math.bme.hu

T. Varjú
e-mail: kanya@math.bme.hu



60 J Stat Phys (2007) 129: 59–80

We note here that though this should be true in any dimension d ≥ 2, mathematical results
only exist for d = 2. In this paper we will also restrict our attention to this case. As suggested
by the beautiful—partially rigorous, partially heuristic—work of Bleher [3], in the infinite
horizon case (d = 2!) the asymptotic behavior of the displacement Sn, taken in the moment
of the nth reflection from a scatterer, is slightly superdiffusive and Sn√

n logn
was expected to

possess a limiting Gaussian distribution. The first main aim of the present work is to provide
the first rigorous proof of this statement.

Theorem 1 (Global limit theorem) Suppose that the direction vectors of infinite, collision-
free flights span the plane. Let A be a bounded open set in the plane. Then

μ

(
Sn√

n logn
∈ A

)
→

∫
A

φΣ(z)dz

where φ is a nondegenerate Gaussian density with zero expectation and covariance ma-
trix Σ .

A mostly geometric proof of this theorem was sketched in [24]. However, before we had
completed our paper with the technical proof of Theorem 1, there appeared a much interest-
ing work of Bálint and Gouëzel, [2]: for the stadium billiard they gave a quite analytic proof
of a global limit theorem which also uses the

√
n logn scaling. The coincidence of scalings

is explained by the analogous behavior of long free flights in our model (i.e. in corridors of
the Lorentz process) and that of the quasi integrable trajectories between the linear sides of
the stadium billiard (the neighborhood of bouncing ball orbits). The arguments of [2] also
helped us to simplify our approach substantially at essentially three points:

1. once one has a tower construction à la Young, their Lemma 3.5 (cf. our Theorem 13) pro-
vides a general, concise condition for the validity of a non-standard Gaussian limit law;

2. they reduce the “tower-sums” to a more tractable, still dominant part;
3. for describing excursions from the tail they use a delicate result of Chernov, [8] (see in

our Lemma 16).

A well-known spectacular property of discrete approximations of the Brownian motion,
like of simple symmetric random walks, is Pólya’s classical theorem, claiming recurrence
in the planar case.

For the diffusive, finite horizon case of the Lorentz process this had been proved by
various authors in [12, 20, 23]. (As a matter of fact, the problem was raised by Sinai in 1979,
after he, with Bunimovich, had proved its convergence to the Brownian motion (cf. [7] and
also [6]). In 1985—as a partial solution—the first named author jointly with A. Krámli
could settle a weaker property: quasi-recurrence of the planar, finite horizon Lorentz process,
cf. [16].)

The arguments of [23] relied on a local version, LCLT of the central limit theorem (CLT).
Our second main aim here is to first deduce a local limit theorem (Theorem 2, a LLT), a local
version of Theorem 1 and then by using it to establish the recurrence of the planar Lorentz
process with an infinite horizon (Theorem 3).

Theorem 2 (Local limit theorem) Suppose that the direction vectors of infinite, collision-
free flights span the plane. Let kn ∈ Z

2 such that kn√
n logn

→ k ∈ R
2. Then for the discretized

position vector Sdisc
n the following holds:

n lognμ(Sdisc
n = kn) → φΣ(k)

where φΣ is a nondegenerate Gaussian density with zero expectation from Theorem 1.
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Theorem 3 (Recurrence)

μ(∃nk → ∞, Sdisc
nk

= 0) = 1.

It is worth mentioning that, for the planar Lorentz process with a finite horizon but with
a finite modification of a periodic scatterer configuration, the problem of recurrence and of
ergodicity was studied by Lenci [17].

The recurrence itself also has an additional interesting conclusion. Let us note first that
for the Lorentz process strong stochastic properties, like correlation decay, limit laws, etc.
could only be obtained in the case of a periodic configuration of scatterers for then its factor
is a Sinai billiard. For this same case, however, it is an interesting question whether the
Lorentz dynamics is ergodic without this factorization as well (N. B. in this case the invariant
measure is infinite!). The combination of Theorem 3 with an old result of Simányi, [21] also
provides the answer:

Theorem 4 The planar Lorentz dynamics with a periodic configuration of scatterers is er-
godic.

Theorems 3 and 4 are true in the finite horizon case also (see above).
The paper is organized as follows. Section 2 is devoted to the description of the model

and to the study of its important geometric properties. In fact, we recall the notion of cor-
ridors also discussed in Bleher’s work; they are distinguished parts of the phase space in
whose neighborhood the free flight vector becomes unbounded. Here we also introduce new
coordinates to make easier the study of the tail behavior of the free flight vector and its as-
ymptotic Markov property. In particular, our geometric probabilistic estimates are sharper
than those of [3]. Finally Sect. 2 closes with a brief reminder about the non-normal domain
attraction of the normal law. Section 3 is preparatory to the technique used: it contains a
reminder on Young towers and on the Fourier transform of the Perron–Frobenius operator.
Section 4 contains the proof of Theorem 1, while Sect. 5 those of Theorems 2, 3 and 4.

For the convenience of the reader we summarize the main results used from other papers:

• Young’s tower construction which, in fact, is briefly recalled in Sect. 3.1;
• The singularity structure (recalled in Sect. 2.3) and the growth lemma (used in the proof

of Lemma 16) from Chernov [8] (or alternatively from Chapter 5 of [10]);
• Theorem 13 and Lemma 15 of this paper from [2].

2 The Model and Its Geometry

2.1 The Model

Consider finitely many scatterers Oi on the 2-torus, (also called obstacles) T
2 ⊃ O = ∪Oi

such that each of the scatterers is strictly convex with a C3-smooth boundary. Let n(q) denote
the unit normal vector of the boundary ∂O at the point q , directed outwards O. The phase
space of the system is:

X = {(q ∈ ∂O, v ∈ R
2) | |v| = 1, 〈v,n(q)〉 ≥ 0}.

The dynamics T : X → X is uniform motion with velocity vector v followed by an elastic
collision (v is mirrored to the tangent line at the point of impact). This system has a natural
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invariant measure: if we denote by l the total length of ∂O, then dμ = 1
2l

〈v,n(q)〉dqdv, is
an invariant probability measure, since

∫
X
〈v,n(q)〉dqdv = 2l. The normalizing constant 1

2l

will be denoted by cμ.
This phase space will be identified with a finite number of cylinders ∂O × [− π

2 ; π
2 ]. So

in this paper if v denotes the velocity of a phase point it is meant as v ∈ [− π
2 ; π

2 ].
The boundary of this phase space consists of tangential collisions denoted by S0. The

dynamics resp. the inverse dynamics is non-continuous in backward resp. forward images
of this set. We will denote Si = T iS0, i ∈ Z.

The planar Lorentz process is the natural Z
2 cover of the above-described toric billiard.

More precisely: consider Π : R
2 → T

2 the factorization by Z
2. Its fundamental domain D

is a square (semi-open, semi-closed) in R
2, so R

2 = ∪z∈Z2(D + z), where D + z is the
translated fundamental domain.

We lift the obstacles to the plane (i.e. we take Õ = Π−1O), and define the phase space X̃,
and the dynamics T̃ exactly the same way as above. The free flight function ψ̃ : X̃ → R

2 is
defined as follows: ψ̃(x̃) = q̃(T̃ x̃) − q̃(x̃). The discrete free flight function κ̃ : X̃ → Z

2 is
defined as follows: κ̃(x̃) = ι(T̃ x̃) − ι(x̃), where ι(x̃) = z if q(x̃) ∈ D + z. Observe finally
that ψ̃ and κ̃ are invariant under the Z

2 action, so there are ψ and κ functions defined on X,
such that ψ̃ = Π∗ψ and κ̃ = Π∗κ . Actually for our purposes it will be more convenient
to choose the fundamental domain in such a way that ∂Õ ∩ ∂D = ∅. In this way κ will be
continuous.

Definition 5 The system is said to have finite horizon if the free flight function is bounded.
Otherwise the system is said to have infinite horizon.

2.2 The Corridors, Their Geometry and the Tail of the Free Flight

From now on we will be only considering the infinite horizon case. It had been observed in
the physical literature (cf. [4, 5, 14, 26]) that, in this case, the anomalous diffusive behav-
ior is intimately related to the unboundedness of the free flight vector. More precisely it is
related to its tail behavior that is to the behavior of the free flight vector in the neighbor-
hood of collision-free orbits. This motivated Bleher [3] to introduce corridors and to study
probabilistic geometric estimates of the tail behavior of free flight vectors in these corridors.
Our method, however, requires more delicate estimates (the results are also sharper), and
therefore we are starting to build up our language.

In the infinite horizon case the only reason for the unboundedness of the free flight
is the presence of corridors. These are bi-infinite strips in the billiard-table R

2 \ Õ. The
strips are tangent to the obstacles, and their slope is necessarily rational, and, moreover—up
to Z

2 translations—there are finitely many of them. We will suppose the—geometrically
generic—condition: for each corridor, and each side of the corridor the tangent obstacles
are the images of a single scatterer under Z

2 translations. Our results are also valid in the
excluded cases, but the geometric constants, which we will calculate would have a more
complicated form.

For such a corridor there are four corresponding points in the phase-space, as shown on
Fig. 2. These points are on the boundary of X, and are fixed by the dynamics. (Without the
previous condition these would be only periodic points.) Outside of the neighborhood of
these points the free-flight is bounded.

Let us fix such a fixed point on the boundary as x0 = (q0;v0), where v0 is either π/2 or
−π/2. Let us denote by O0 the obstacle on which q0 is placed. The free flight ψ(x0) is a
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Fig. 1 Free-flight crossing a corridor, and some geometric constants

Fig. 2 A corridor, and the
corresponding four phase points

lattice vector ψ(x0) = κ(x0), since T x0 = x0. Denote κ(x0) = w0, and the curvature of O0

at q0 by ξ0. Denote the considered (small enough) neighborhood of x0 by U0.
In U0 (means close enough to x0) two types of nonsingular collisions can happen. First

when the moving particle is “crossing” the corridor (see Fig. 1). In this case the free-flight
is long (actually this is the only case), the closer the phase point lies to x0 the longer the
free-flight can be. The next collision happens on the “other side” of the corridor. To make
it precise let us denote by x1 = (q1;v1) the phase point which corresponds to the same
corridor as x0, but v1 = −v0 and q1 �= q0 (see Fig. 2). Denote by �Q0 the planar lattice vector
ι(q̃1) − ι(q̃0), where the lifting is such that q̃1 − q̃0 “crosses” the corridor (see Fig. 1). We
also need to define the “width” of the corridor d which is the length of that component of
q̃1 − q̃0 which is perpendicular to w0.

The other type of nonsingular trajectory in U0 is when the next collision is on the “same
side” of the corridor i.e. κ = w0. The phase point T x is then again close to x0, but this time
it is of the first type, so consecutive “same side” collisions cannot happen. This can be seen
on Fig. 3.
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Fig. 3 If phase point T −1x is such that κ(x) = w0, then if x ∈ U0 the free flight starting in q(x) “crosses”
the corridor

Fig. 4 Singularity structure and singular trajectories near x0

Proposition 6 Let U0 ⊂ X be a sufficiently small neighborhood of x0 then

μ{x ∈ U0 | κ(x) = Nw0 + �Q0} ∼ cμd2|w0|−1N−3.

The range of κ in U0 is �Q0 + w0Z
+ with possibly finitely many exceptions.

We postpone the sketchy proof for the first fact to Sect. 2.4. The second statement was
essentially proved in the above text.

2.3 The Singularity Structure

We are going to describe the singularity structure, and the type of singular trajectories in U0.
The importance of this is that singularities bound the sets for which we want to derive
measure estimates. On Fig. 4 we also plot some trajectory-segments, the configuration com-
ponent of the corresponding phase point is denoted by a small tick perpendicular to the
trajectory.

There is a singularity curve from S−1 which is a preimage of tangential collisions, de-
noted by thick line in Fig. 4, starting from x0. This consists of phase points where the next
collision will be tangential on O0 +w0. This is called the “main” singularity. The reason for
this is not that it would be more singular, but rather the fact that other singularities end on
this line.
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There are singularity curves printed on the left of this one, starting on the boundary of
the phase space and ending on the main singularity. These consist of phase points where the
free flight “crosses” the corridor, and the next collision is tangential. Therefore this is also
a part of S−1. A level-set of the discretized free-flight function κ consists of a curvilinear
rectangle bounded by two neighboring curves from this singularity family, the edge of the
phase space and the main singularity.

On the right of the main curve there are some curves from S−2. These also start on
the boundary and end on the main curve, but unlike the previous ones, these curves have
zero angle with the main line. These consist of phase points, for which the first collision is
on O0 + w0, and the next one is tangential after crossing the corridor. On the right of the
main singularity the next collision for any phase point occurs on O0 + w0, therefore κ is
constant w0 in this half of U0.

These two families of singularity curves have an infinite number of pieces accumulating
in x0. The closer the curve is to x0 the further the tangential collision occurs, after the moving
particle has crossed the corridor. The main singularity curve has slope −ξ0 on the boundary
of the phase space. For the other singularity curves the slope on the boundary of the phase
space is asymptotically −ξ0 as they approach x0.

The last singularity curve we want to describe is from S1. It consists of phase points,
where the previous collision was tangential on O0 − w0. This is the image of the half of
∂X ∩ U0, namely that half where κ = w0 (on the right of x0 on Fig. 4). Consequently (since
x0 is fixed) this curve starts at x0. This is drawn with a dotted line on Fig. 4. This curve has
slope ξ0 on the boundary. The sign of the second derivatives of all the singularity curves can
be read from the picture.

2.4 New Coordinates, and the Joint Distribution of κ , κ ◦ T −1

In this subsection some proofs will be omitted, some will be sketchy or require further esti-
mates. However, since the missing parts rely on simple but tedious geometrical calculations
and the application of these results in later sections does not need sharp estimates, we in-
tended to keep this section not too long.

Instead of using the original (q0, v0) coordinates we are going to introduce new (α, z)

coordinates in U0. The new coordinates z and α are shown on Fig. 5 (these coordinates are
also different from those of [3]). During the free-flight, bouncing off the scatterer O0, the
trajectory of x crosses the trajectory of x0. This crossing point is therefore q0 + zw0 for
some z ∈ R. The reader should convince himself that the coordinate z is, in fact, a periodic
one with period 1. The other coordinate α is the angle �(w0,ψ(x)).

The reason for this change is that these coordinates are more suitable for computations
in relation with the free-flight since they are more intrinsically related to the geometry of
the model, especially asymptotically (when the free flight goes to infinity). For example, the
free flight has the asymptotic form |κ| ∼ d

α
where d is the ’width’ of the corridor (cf. Fig. 1).

Also, the invariant measure is asymptotically equal to cμ|α||w0|dzdα.

Fig. 5 The new coordinates z,α
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We note that the crossing point (which was the base of this coordinatization) does not
exist when the next collision occurs on O0 + w0. So these new coordinates map only the
half of U0 to the (z,α) plane. Namely that half which is drawn on the left of the main
singularity on Fig. 4. We will denote this part by U ′

0 (remember that x0 and U0 are fixed).
However, this restriction does not influence the study of asymptotics, since we miss only the
w0-level set of κ inside U0.

Proof of Proposition 6 The level-set of κ is a curvilinear rectangle in the (z,α) plane (cf.
Fig. 6). We are going to multiply the height, the width and the density to get the measure. The
width is simply 1. The height can be obtained from the formula α ∼ d

|κ| . Writing α′ ∼ d
|κ|+|w0|

we get α −α′ ∼ d|w0|
|κ|2 . The density is cμ|α||w0| and by substituting α we get cμd

|w0|
|κ| . So the

measure is ∼ cμd2|w0|2
|κ|3 . �

Let us explain how this (z,α) image on Fig. 6 is related to the phase portrait on Fig. 4
explained before. The largest curvilinear rectangle on Fig. 6 is the image of a level-set of
κ under the (z,α) coordinate-mapping. This level set is bounded by the boundary of the
phase-space on the left, two singularity curves from the first family on the top, and on the
bottom, and the main singularity on the right. There is also the dashed line, which is the
singularity line from S1, already explained before, too.

This latter line plays an important role in the joint distribution. On the left of this line
κ ◦ T −1 = w0. On the right of this line the mapping T −1 takes values in the neighborhood
of another corridor-phase-point x1 (see Sect. 2.2). We are going to use w1, ξ1,U1,U

′
1 for

the point x1 in the same sense as w0, ξ0,U0,U
′
0 have been used for the point x0. Using this

notation, on the right of the line we are describing now, there lies T U ′
1.

Talking about the joint distribution in terms of our new coordinate functions, note that
the α coordinate function is defined in U ′

0. Therefore α ◦T −1 in the domain U ′
0 ∩T U ′

1 has to
be meant as applying the same coordinatization rule in U1. Since w1 = w0, the α coordinate
functions in U0 and U1 are comparable also as absolute angles: the observer only has to
change signs.

By definition the sign of α is positive, and z is mostly positive. More precisely remember
that the asymptotic form of the invariant measure does not depend on z meaning that in the
|κ| → ∞ limit the distribution of z is uniform. Now consider the range of z in the domain
κ = �N :

zmin
def= min{z(x) | x ∈ U0, κ(x) = �N}

Fig. 6 Level set of κ inside U0,
and its intersection with a level
set of κ ◦ T −1 (in the (z,α)

coordinate plane)
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and respectively

zmax
def= max{z(x) | x ∈ U0, κ(x) = �N}.

Proposition 7 The asymptotics of the range of z in the domain κ = �N when �N is in the
range of κ (see Proposition 6) and | �N | → ∞ is

zmin ∼ 1 − zmax ∼ d

2|w0|ξ0| �N | .

Easy geometrical calculations yield the collision equation:

Proposition 8 On U ′
0 ∩ T U ′

1:

α ◦ T −1 ∼ −α + 2
√

α2 + 2αz|w0|ξ0 (α → 0).

Proposition 9 In U0 the following holds:

min|κ| ◦ T −1 ∼
√

d|κ|
8ξ0|w0| and max|κ| ◦ T −1 ∼ 8ξ0|w0||κ|2

d
, |κ| → ∞.

Proof Substituting the asymptotic maximum of z (max z → 1 as α → 0) to the colli-
sion equation and omitting non-dominant terms we get maxα ◦ T −1 ∼ 2

√
2α|w0|ξ0. Since

α ∼ d
|κ| and α ◦ T −1 ∼ d

|κ◦T −1| , substituting α and α ◦ T −1 and then rearranging yields the

first statement of the proposition. Using the time-reversion symmetry for this formula we
get the second one. �

We can also compute the joint distribution of (κ, κ ◦ T −1).

Proposition 10

μ({κ = �N} ∩ {κ ◦ T −1 = �M} ∩ U0) � cμd3|w0|2
4ξ0

| �N | + | �M|
| �N |3| �M|3 .

Proof For a nonempty intersection we are going to multiply the height the width and the
density to get the measure. The density and the height are the same as in the proof of Propo-
sition 6. For the width consider the derivative of the collision equation

∂α ◦ T −1

∂z
∼ 2α|w0|ξ0√

α2 + 2αz|w0|ξ0

.

To express the square root in terms of κ and κ ◦T −1 we can rearrange the collision equation,
and substitute α and α ◦ T −1:

d

|κ ◦ T −1| + d

|κ| ∼ 2
√

α2 + 2αz|w0|ξ0.
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We can express the increment of z as the inverse of the derivative multiplied by the increment
of α ◦ T −1. That is

d

|κ◦T −1| + d
|κ|

4 d
κ
|w0|ξ0

d|w0|
(κ ◦ T −1)2

∼ d
κ + κ ◦ T −1

4ξ0(κ ◦ T −1)3
.

Hence the proposition. �

The measure of the set {κ = �N} ∩ {κ ◦ T −1 = �M} ∩ U0 can be zero when �N or �M is not in
the range of κ inside U0 (see Proposition 6) or they fail the range inequality (we only gave

the asymptotics of this in Proposition 9 roughly c3

√
| �N | < | �M| < c4| �N |2). It can be also

smaller than the expression given in Proposition 10 when the pair ( �N, �M) is close to the
boundary of the range inequality, but we do not want to formulate the validity precisely, we
just mention that in most part of the domain the inequality is sharp. It can also be checked
by summing the right hand side, and getting 1 in the limit.

What this essentially means is that the previous free-flight |κ ◦ T −1| is mostly in the
range of

√|κ|. The measure of being in any other range can be estimated from above with
|κ| powers. To formulate precisely what we will use later in Sect. 4.1:

Proposition 11

μ({κ = �N} ∩ {κ ◦ T −1 > |κ| 2
3 } ∩ U0) = O(| �N |−10/3).

Proof
∑

M=N
2
3

N+M

N3M3 = O(N−10/3). �

The other level set of κ ◦ T −1 which intersects U0 is the κ ◦ T −1 = w0 set.

Proposition 12

μ({κ = �N} ∩ {κ ◦ T −1 = w0} ∩ U0) = O(| �N |−4).

Proof As before the measure will be estimated with the product of the height, density and
the width. It remained to estimate only the width. The domain is the left-hand side of the
dashed line on Fig. 6. Going from right to left inside the level set in Fig. 6, the dashed line
is reached exactly when α ◦ T −1 reaches its minimum. According to Proposition 9 we have
to estimate what is the value of z for which α ◦ T −1 reaches const · α2. Exact calculations
based on the derivative of the mapping would give O(| �N |−5) in the right hand side of the
proposition, but here it is sufficient to observe that this singularity line denoted by the dashed
curve is on the left of the z = 0 line, where α = α ◦ T −1. So the width can be estimated by
zmin which was given in Proposition 7. �

Lastly we have to introduce homogeneity strips. This is a traditional tool in the theory of
hyperbolic billiards to ensure the necessary distorsion bounds (cf. [10]).

Hk = {(q, v) ∈ X | π/2 − k−2 < v < π/2 − (k + 1)−2}
and

H−k = {(q, v) ∈ X | −π/2 + (k + 1)−2 < v < −π/2 + k−2}
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for all k ≥ k0 and

H0 = {(q, v) ∈ X | −π/2 + k−2
0 < v < π/2 − k−2

0 }
where k0 is a fixed, suitably large constant.

These strips can also be expressed in the terms of κ and κ ◦ T −1 since the distance from
the boundary of the phase-space in U ′

0 ∩ T U ′
1 is asymptotically:

d
|κ| + d

|κ◦T −1|
2

. (1)

It follows that the smallest k > 0 index such that Hk or H−k intersects {|κ| = N} is:
max{k0, cN

1/4}.

2.5 Non-Normal Domain of Attraction of the Normal Law

First we summarize the necessary information about domains of attraction focusing mainly
on our interest: the non-normal domain of attraction of the normal law (cf. the mono-
graphs [15], Sect. II/6 or [13], Sect. XVII/5). A random variable R with distribution function
PR belongs to the domain of attraction of a normal distribution if its characteristic function
satisfies

log
∫

eitudPR(u) = itν − 1

2
t2L(1/|t |)(1 + o(1)) (t → 0)

for some constant ν ∈ R and a slowly varying function L : (0,∞) → (0,∞) which is
bounded below. (Note that o(1) can be complex.) Recall that the positive function L :
(0,∞) → (0,∞) is slowly varying at infinity if for each x > 0 as t → ∞

L(tx)

L(t)
→ 1

(cf. [13] VIII/8).
It is worth mentioning that the slowly varying function in the above equation can be

chosen as

L(x) =
∫ x

−x

u2dPR(u).

In the sequel we fix L in this way and thus it will, of course, be a monotone function.
In general, normal domains of attractions of stable laws are characterized by the fact that
in the limit theorems formulated for them the scaling has an exact polynomial form. The
distribution function PR belongs to the normal domain of attraction of the normal law if and
only if L is bounded. Our interest here, however, is its non-normal domain of attraction.
Denote χ(x) = 1 − F(x) + F(−x). Then PR belongs to the non-normal domain of the
Gaussian law if and only if one of the following conditions hold:

• L(x) = ∫ x

−x
u2dPR(u) is an unbounded slowly varying function;

• χ(x) = l(x)

x2 where l(x) is a slowly varying function; if so, then it is true that l(x) =
o(L(x)).

Finally, for a random variable R in the non-normal domain of attraction of the normal
law, the independent sum of PR-distributed random variables S∗

n satisfies the limit theorem:
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S∗
n−nν

Bn

d→ N (0,1) as n → ∞ in distribution, where Bn is the normalizing sequence defined

by the asymptotics nL(Bn)

B2
n

→ 1.
Let us turn now to our situation. The random variable κ is a vector. It was shown in

Proposition 6 that its component function belongs to the non-normal domain of attraction of
the normal law, if that component is not perpendicular to all of the corridor-free-flights wi .
In this case l(x) is a constant function l(x) ≡ c. Since the free-flight is symmetric, we have
c1 = c2 = 1

2 , and ν = 0. Consequently L(x) ∼ 2c logx, and Bn = √
cn logn is a normalizing

sequence. The constant c depends on which component we are looking at. If we choose
�v ∈ R

2 a unit vector, then the constant of the �v component has the following expression in
the terms of the geometric constants:

c =
∑

x∈∂X|T x=x

cμd2
x

〈ψ(x), �v〉2

2|ψ(x)| . (2)

Remember that for such points ψ(x) = κ(x), and we used the notation ψ(x0) = w0 for the
fixed corridor we were investigating. Also note, that every term in the above sum appears
exactly four times (cf. Fig. 2 in Sect. 2.2)!

Since the configuration is planar, the following is true: if the corridor free-flight vectors
span the plane, then every component of κ , hence the vector itself is in the non-normal do-
main. If this is not the case, then one has to apply anisotropic scaling to get a nondegenerate

limit distribution. Namely it should be
( √

n 0
0

√
n logn

)
in a basis, where the first element is

perpendicular to the corridor free-flights.
The goal of the forthcoming arguments is to establish Bleher’s hypothesis: though the

(stationary) process of the free flights of our model is not an independent process, neverthe-
less in many respects the partial sums behave asymptotically the same way as if the variables
were independent.

3 Young Towers and the Fourier Transform of the Perron–Frobenius Operator

3.1 Young Towers

According to our recent understanding the most efficient way for constructing Markov par-
titions for billiards is to use Young towers, cf. [25]. We are going to introduce the main
concepts without giving a full description.

The presence of singularities prevent stable and unstable curves to possess a lower bound
for their size in any part of the phase-space. Therefore the product structure—the key ingre-
dient of several hyperbolic argument—can only be introduced in a complicated set.

By the local ergodicity theorem for semi-dispersing billiards (cf. [11]) it is possible to
choose an unstable curve W , which is short enough to ensure: a high amount of the points
possesses unstable curve of this length. Then define a subset of this curve consisting of
points, which remain a certain (exponentially shrinking) distance apart from S−1 and other
more technical singularities.

Ω∞ := {y ∈ W | d(T ny,S) > δ1λ
−n ∀n ≥ 0}

where λ is the hyperbolicity constant. If δ1 is chosen small enough this set has positive
measure. By construction each point in Ω∞ possesses a stable curve of length δ1.
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Fig. 7 Young-towers, and Markov-return

So far we have one unstable curve W , and a family of stable curves {γ s}. Let us consider
all the nearby unstable curves, which are long enough, and intersect all the stable curves
in the previous family. These two families of curves {γ s} and {γ u} define the hyperbolic
product-set Λ = (∪γ u) ∩ (∪γ s).

This set is the base of the hyperbolic Young-tower. To continue the construction of the
tower we are going to focus on recurring subsets of Λ. On Fig. 7 we can see that some
parts of Λ are mapped to Λ. However we are only interested in those returns, which respect
the product structure. A subset of Λ is said to be an s-subset if it is the product of the
full family of unstable curves and some part of the stable family. The notion of u-subset is
defined—mutatis mutandis—in the same way.

We can see three intersections on the figure, the lower and upper ones are u-subsets.
Talking about these intersections black covers grey in the unstable direction (when the reader
sees black in these intersections, then on that unstable curve black covers grey). On the
contrary grey covers black in the stable direction (on each stable line black can appear only
where grey is already there). The inverse image of each of these two intersections is an
s-subset.

A Markov-return is an event when some T nΛ ∩ Λ is a u-subset, and it’s inverse image
under T −n is an s-subset. The possible non-Markov returns are when the intersection is not
a u-subset (this is printed as the middle intersection), or when the inverse image is not an
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s-subset. This latter event occurs when a recurring part goes over the edge of Λ in the stable
direction.

The inverse image of the Markov-recurring part is not necessarily a solid rectangle inter-
sected with Λ. It can have infinitely many “holes” in it, as demonstrated on Fig. 7.

The tower is built using these Markov-type returns. The basic Λ set is divided into s-
subsets according to Markov-returns, and each subset is marked by the return time R. In this
way R will be a function on Λ which is constant on these s-subsets. Not all Markov-returns
are considered, for sophisticated details please consult [25]! The tower itself

Δ
def= {(x,ω) : x ∈ Λ; ω = 0,1, . . . ,R(x) − 1}

and the dynamics on the tower is

F(x,ω) =
{

(x,ω + 1) if ω + 1 < R(x),

(T Rx,0) if ω + 1 = R(x).

Note that we have a decomposition into s-subsets which give rise to a Markov partition
on the tower. This tower is only hyperbolic, and as a usual tool in this field Young has also
introduced a factorized version of it Δ̄. Simply collapse the stable direction! This is also
demonstrated on Fig. 7. We have the following commutative diagram of measure preserving
transformations:

(Δ̄, μ̄Δ)
πΔ̄←−−−− (Δ,μΔ)

πX−−−−→ (X,μ)

F̄

�⏐⏐ F

�⏐⏐ T

�⏐⏐
(Δ̄, μ̄Δ)

πΔ̄←−−−− (Δ,μΔ)
πX−−−−→ (X,μ)

(3)

The projection to the original phase-space is not 1-1. On Fig. 7 the intersection in the
middle has at least two inverse images. One of them is in the ground floor, and the other
is on the first floor. Since the return is not Markovian these point are to be considered as
different points on the tower.

Functions on the original phase space X can be lifted to Δ. Functions on Δ which are
constant along stable directions can be considered as functions on Δ̄. For any function ψ on
Δ there exists functions h and ϕ, such that ϕ −ψ = h−h◦F , and ϕ is constant along stable
directions. In this equation the regularity of the functions can be examined, but we will skip
the details, and only introduce distance, and function norms on the factorized tower Δ̄.

Remember that the factorized tower Δ̄ has a Cantor-structure, and a Markov-partition.
The Cantor-hierarchy can be redefined with the separation time

s(x, y) = min{k ≥ 0 | F̄ kx and F̄ ky lie in different elements

of the Markov-partition}.

With any 0 < β < 1 the function βs is a metric providing the original Cantor topology.
On Δ̄ Young uses two kind of norms: the C norm is

‖ϕ‖C
def= sup

l,j

‖ϕ|Δl,j
‖∞e−lε
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where ‖ .‖∞ is the essential supremum wrt μ, and the indices (l, j) refer to the elements of
the Markov-partition. The L norm is a sum of this, and the h-norm:

‖ϕ‖h
def= sup

l,j

(
sup

x,y∈Δl,j

|ϕ(x) − ϕ(y)|
βs(x,y)

)
e−lε;

where the inner sup is again essential supremum wrt μ × μ. For a Hölder function f on the
original billiard phase-space, we can associate a function on Δ̄ as described above, such that
for any β smaller than a certain number (computed from the original Hölder exponent of f )
the resulting ϕ has a finite h-norm.

In these definitions the role of ε is the following: without ε the Jacobian of the mapping
would be 1 except when recurring to the base of the tower. However estimates expressed
in the terms of this norm see a uniform expansion. Not to do harm the mapping should be
expanding, when recurring to the base, so we have to choose ε smaller then the Lyapunov-
exponent.

The Perron–Frobenius operator P is defined on functions on Δ̄ with finite L-norm as the
adjoint of F̄ wrt the measure μ̄Δ.

∫
f · g ◦ F̄ dμ̄Δ =

∫
P (f ) · gdμ̄Δ, f, g ∈ L.

It also has an algebraic form

P (f )(x) =
∑

y|F̄ y=x

f (y)

J (y)
, f ∈ L

where J in the denominator is the Jacobian
∂μ̄∗

Δ

∂μ̄Δ
the Radon–Nikodym derivative of the pull-

back measure wrt the original measure. On the top of the tower the number of inverse images
is infinite, otherwise there is a single preimage, and the Jacobian is 1.

The main issue here is that the transfer operator P possesses a spectral gap. This is the
main reason for introducing this rather complicated and implicit symbolic dynamics. This
gives those analytical tools in our hands which we describe now. Although κ is defined in
the original phase-space X, we will use the same notation for the function lifted to the tower.
Since κ is locally constant it can also be considered as a function on Δ̄.

3.2 Fourier Transform of the Perron–Frobenius Operator

In our case the Birkhoff sum Sn = ∑
k κ ◦ T k is not an independent sum. Since Nagaev’s

1957 work, [18], for concluding a limit theorem, one traditionally uses the Fourier-transform
of the transfer operator. The Fourier transform operator is defined on the Young-tower, since
that is the symbolic space, on which we have the full power of analytical tools built on the
transfer operator:

Pt(h)
def= P (ei〈t,κ〉h) (h ∈ L, t ∈ R

2).

It has the following simple connection with the characteristic function of the Birkhoff-sum:

∫
exp(i〈t, Sn〉)dμ =

∫
P n

t (1)dμ̄Δ.
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For small values of t , Pt can be considered as a perturbation of P , since P0 = P . Then
one, in general, proves that Pt possesses a gap between the leading simple eigenvalue λt and
the rest of the spectrum and the gap is uniformly bounded away from zero.

For large values of t one needs to know exactly for which t values will the unit circle
intersect the spectrum. In our case for the continuous free flight function this occurs when
t ∈ 2πZ

2. For that reason we switched to the discretized function κ , since the latter one is
an integer valued vector function, and thus Pt = P when t ∈ 2πZ

2, so we can factorize, and
consider t ∈ 2πT

2. This is the question of minimality which is completely described in [23].
Moreover, if our interest is a global limit law, then it is sufficient to derive an appropriate

expansion for λt for small values of t .
Indeed, this is also contained in the statement of Theorem 13 from [2]. As a matter of

fact, our main task will be to check the key condition of that theorem and thus we will
actually derive a simple asymptotics P n

t = λn
t + O(ϑn), for a suitable ϑ < 1. Consequently,

the characteristic function of the dependent sum can be approximated with a power. Thus it
is only the asymptotics of λt that has remained to be investigated, and we expect the same
behavior what we have seen in the single term characteristic function. This will mean that
the effect of dependence is negligible: both the independent and the dependent sums have
the same asymptotic expansion for the Fourier transform, namely 1 + cn|t |2 log |t |. (In this
formula c describes the direction-dependence, and |t | the length, remember the definition
of c in (2)!) Further, relying upon the method of [23], we will also be able to handle the
local version of the global limit law.

4 Proof of Theorem 1: the Asymptotics of λt

In the forthcoming section we are going to establish the global limit law of Theorem 1 via
an asymptotic expression at t → 0 of λt , the leading eigenvalue of the Fourier-transform of
the Perron–Frobenius operator. We will rely upon ideas of [2] and of our work [24].

The following theorem of [2] provides a condition for a limit law in the non-standard
domain of attraction of the Gaussian law for models possessing a Young tower with an
exponential tail bound for the height function, in general.

Theorem 13 ([2], Theorem 3.5) Assume that the distribution of a function g ∈ L is in the
nonstandard domain of attraction of the normal law (wrt μ̄Δ). Remember that ω was the
level function of the tower. Denote the “tower-sum” by G = ∑ω

k=1 g ◦ F̄ −k . Let L, l be as in
Sect. 2.5. Assume, moreover, that l(x logx)/ l(x) → 1, L(x logx)/L(x) → 1 when x → ∞.
Finally, assume that there exists a real number a �= −1/2 such that

∫
g(eitG − 1)dμ̄Δ = (a + o(1))itL(1/|t |) (t → 0). (4)

Write L1(x) = (2a + 1)L(x), and choose a sequence Bn → ∞ such that n

B2
n
L1(Bn) → 1.

Then for λt the leading eigenvalue of the Pt(h) = P (eitgh) Fourier-transform-operator:

λt = 1 − t2

2
L1(1/|t |)(1 + o(1))

and consequently for the Sn = ∑n−1
k=0 g ◦ F̄ k Birkhoff-sum:

Sn − n
∫

g

Bn

d→ N (0,1).
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We will indeed show that in our case the integral condition (4) of the above theorem
holds for g = κ with a = 0. (This is actually the case discussed by [1].) We note that this
case will allow a simpler treatment than that of the stadium because here the expansion rate
is much larger (though the logarithm of the free flight function in a corridor does not form a
random walk as it is the case in the stadium).

Our arguments for the local limit theorem will use again the asymptotics of the main
eigenvalue λt , which is expressed for our case by the next corollary.

Corollary 14 The Fourier transform operator of the discretized free-flight function has the
following expansion for its leading eigenvalue:

λt ∼ 1 + cn|t |2 log |t |.

Turn to the proof of the integral condition (4). In our case the function κ is locally
constant, so we can pass the integral immediately to Δ. Denote the “tower-sum” by
K = ∑ω

k=1 κ ◦ F−k . It is easy to see that the dominating terms of the integral in (4) are
those corresponding to parts of the phase space when the process is close to a singular point
say x0 (discussed in Sect. 2.2).

The estimate of this integral is based on the following fact. We have already observed that
high values of κ are typically reached rapidly: κ ◦ T −1 is in the order of

√|κ|. During this
fast trajectory segment the tower-sum can be estimated with the last term, hence it is also
of order

√|κ|. Since |eitK̄ − 1| ≤ tK̄ , the integral can be estimated by t
∑

n n
√

n · μ{|κ| =
n} = O(t). The trajectories which do not provide fast reach have polynomially small (in |κ|)
relative measure in the level-sets. These domains can be discarded due to the following
lemma:

Lemma 15 Any part of the integration domain A with measure μ(A ∩ {|κ| = N}) =
O(N−3−α) with any α > 0 can be thrown away:

∫
Δ

κ(ei〈t,K〉 − 1) =
∫

Δ\A
κ(ei〈t,K〉 − 1) + O(|t |).

This is proved in Proposition (4.17) of [2]. Though the integration domains are in the hyper-
bolic Young-tower, if we identify the sets to be disregarded on the original phase-space X,
then by measure preservation their pullbacks will satisfy the lemma.

4.1 Reduction of the Integration Domain

First we are going to discard that part A1 of the neighborhood of x0 where the last step was
not fast enough, i.e. A1 = {x ∈ U0 | |κ ◦ T −1| > |κ| 2

3 } ⊂ X. We also discard the set A2 of
those points where κ ◦ T −1 = w0, i.e. A2 = U0 \ U ′

0.
We already know that the relative measure of (A1 ∪ A2) inside {|κ| = N} is O(N−1/3)

(cf. Propositions 11 and 12).
Let us foliate the remaining part with curves whose direction is nearly unstable (the

derivative is in the unstable cone for T −1). The third discarded set A3 will consist of points,
for which the backward V logN -step trajectory meets the {|κ| > N

4
5 } set, where V is a large

number to be chosen later. To estimate the relative measure of A3 we prove the following
lemma:
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Fig. 8 The discarded sets A1
and A2 in the level set of κ and
the foliation with nearly unstable
curves

Lemma 16 There exists a constant C such that, for any large enough integer V it is true:
for any large enough N , given any unstable curve D (for the mapping T −1) in the set {|κ| =
N} \ (A1 ∪ A2), the points for which |κ| increases above N4/5 within V logN iterations of
T −1 occupy a subset whose relative measure is less than CN−2/45 in that curve.

Proof The proof is a suitable modification of Lemma 4.18 of [2]. We are going to apply the
growth lemma of Chernov as formulated in [9] (Lemma 2.2) (or in Sect. 5.9 of [10]). The
validity of this lemma in infinite horizon planar billiards was proved in [8]. We briefly recall
the statement. The subject of the lemma is a possibly countable collection of smooth curves
γ which satisfies the following properties:

• the derivative is in the unstable cone (then the curves are called unstable ones),
• the components are contained in homogeneity strips (if the curve goes through the bound-

ary of a homogeneity strip, then the intersection with the boundary is considered as a
breakpoint on the curve),

• and the lengths of the components do not exceed a fixed sufficiently small constant δ1.

The evolution of such a curve is that the mapping is applied to it. After that, the image is cut
by boundaries of homogeneity strips. The resulting components which are longer than δ1

are cut into pieces of length between δ1/2 and δ1. This way the image will satisfy the same
properties.

The essence of the growth-lemma is the following. When applying the above procedure
to γ it is stretched and cut. The growth lemma bounds the total measure of points close
to the boundaries of these pieces, or in other words it provides a lower bound for the total
measure of sufficiently long pieces.

Lemma 17 (Growth Lemma 2.2, [9]) There exist positive constants δ1, c1, c2, and θ1 < 1
and λ > 1, such that if γ satisfies the above properties, then for any n ≥ 0 and ε > 0 we
have

Lebγ (rn(x) < ε) ≤ c1(θ1λ)nLebγ (r0(x) < ε/λn) + c2εLebγ (γ )

where rn means distance from the boundary in the nth image (i.e. that of the point T nx from
the boundary of the component of T nγ which contains it).

Our task is to estimate the relative measure of the points which reach the |κ| > N4/5 set in
a V logN -collision trajectory segment. By (1) within {|κ| = N4/5} the largest homogeneity
strip has index cN1/5 and width cN−3/5. Hence the points which reach |κ| > N4/5 will sit
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on a curve component with length not larger than cN−3/5. We are going to estimate the
relative measure of points of the latter type using the growth lemma for all n < V logN

and for ε = cN−3/5. We note that distances, and Lebγ is necessarily meant in the original
coordinates, rather than in the new ones.

We are not going to apply the growth lemma directly on D, but rather on the T −1D
image of the curve. Since the relative measure has to be taken in D, and the expansion is not
uniform on D, we have to chop the image into smaller pieces, where the expansion is more
or less uniform, and to give a universal upper bound for the relative measure of bad points
on the pieces. In order to do that we are going to consider 〈M〉 = T −1D ∩ {|κ| = M} for all
the possible M values. This is the cN1/2 < M < N2/3 interval. (Remember that in the set
{|κ| = N} \ (A1 ∪ A2) one has |κ ◦ T −1| < N

2
3 .)

First we are going to discuss the simplest case, when T −1D has a complete intersection
with {|κ| = M} meaning that T −1D does not meet any member of the infinite family at
∂{|κ| = M} (cf. Sect. 2.3). In this case Leb〈M〉〈M〉 = cM−1/2.

After applying the growth-lemma we want to sum for the different n values, so we are
going to cut out the set where multiple counting would spoil the estimates. The set to cut
out is simply A1 ∪ A2. By Propositions 11 and 12 this has relative measure cM−1/3. By
the geometry of the phase-space this estimate is uniform on those unstable curves where
the intersection is complete. Finally we are going to apply the growth lemma to the pieces
〈M〉r = 〈M〉 \ (A1 ∪ A2):

Leb〈M〉r (rn(x) < ε) ≤ c1(θ1λ)nLeb〈M〉r (r0(x) < ε/λn) + c2εLeb〈M〉r 〈M〉r .
We have to estimate the resulting Leb〈M〉r (r0(x) < ε/λn) on the right hand-side. By (1)

the number of those homogeneity strips which intersect 〈M〉r is cM1/3. Therefore

V logN∑
n=0

(θ1λ)nLeb〈M〉r (r0(x) < ε/λn) ≤
V logN∑

n=0

(θ1λ)n2ελ−ncM1/3 ≤ cM1/3ε.

Hence

Leb〈M〉{x | ∃n < V logN rn(x) < ε}
Leb〈M〉〈M〉 ≤ cM−1/3 + cM5/6ε + c2εV logN.

Since M < N2/3 and ε = cN−3/5 the relative measure estimate is cN−2/45. By
monotonicity, if an intersection is not complete, and it continues in an other domain {|κ| =
M ± 1}, then for the union of these pieces we have the same relative measure estimate. So
we have the same relative measure estimate for the whole T −1D except possibly for the
neighborhood of the endpoints T −1∂D. There are two of them and the neighborhood inside
D has relative measure at most cN−1. �

The last discarded set will be defined on the tower: We are going to throw away that
part A4 of the integration domain, which is too high on the tower ω > V log |κ|. Since the
tower has exponentially small tails, if V was chosen large enough, then the discarded set
has measure μΔ(A4 ∩ {|κ| = N}) = O(N−4), and thus by Lemma 15 the integral can be
restricted to its complement.

Now it remained to estimate the integral on the non-discarded set.

Lemma 18 ∫
π−1

X
(X\⋃3

i=1 Ai)\A4

κ(ei〈t,K〉 − 1) = O(|t |).
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Proof Consider the integral on the left. By the definition of the discarded sets we have:

∣∣∣∣
∫

π−1
X

(X\⋃3
i=1 Ai)\A4

κ(ei〈t,K〉 − 1)

∣∣∣∣
≤ |t |

∫
π−1

X
(X\⋃3

i=1 Ai)\A4

|κ||K|

≤ C|t |
∑

n

μ{|κ| = n}n lognn4/5 ≤ C|t |.
�

5 Proof of Theorems 2, 3 and 4

The proof of the local limit theorems (Theorems 20 and 21 below) and that of the recurrence
is -mutatis mutandis- the same as for the finite horizon case [23]. Here we are going to state
the theorems only, and comment just the beginning, where the different norms used by the
different approaches ([2] and [23]) could lead to a confusion.

Theorem 19 (Nagaev-type theorem, modification of [23] Theorem 3.3) There are constants
ε > 0, K > 0 and θ < 1 and a function ρ : (−ε, ε) → L such that

∥∥∥∥P n
t h − λn

t ρt

∫
Δ̄

hdμ̄Δ

∥∥∥∥
L1

≤ Kθn‖h‖L ∀|t | < ε, n ≥ 1, h ∈ L (5)

and

‖ρt − 1‖L1 → 0 (t → 0), λt = 1 + (1 + o(1))c|t |2 log |t |.

The statement in [23] was stronger in the sense of norms, but the inequality (5) is com-
pletely enough for the proof of our local limit theorems. The proof of Theorem 19 can also
be straightforwardly derived from considerations in [2], cf. the proof of their Theorem 3.5.

Theorem 20 (Local limit theorem) Suppose that the corridor free flights {κ(x) | x ∈
∂X, T x = x} span the plane. Let kn ∈ Z

2 be such that kn√
n logn

→ k ∈ R
2. Then

n lognμ{Sn = kn} → ϕ(k)

where ϕ is a non-degenerate normal density function with zero expectation and covariance
matrix

∑
x∈∂X|T x=x

cμd2
x

2|κ(x)|
(

κ2
1 (x) κ1(x)κ2(x)

κ1(x)κ2(x) κ2
2 (x)

)

where κ = (κ1, κ2) is the notation for the component functions.

The proof of recurrence follows a version of the Borel–Cantelli lemma due to Lamperti
(cf. [22]). See [23] for the statement, conditions and the details of application. For this part
of the Borel–Cantelli lemma one needs some kind of independence. Lamperti’s condition
can be fulfilled when one proves an asymptotic independence statement:



J Stat Phys (2007) 129: 59–80 79

Theorem 21 Let jn ∈ Z
2 be such that jn√

n logn
→ j ∈ R

2, and kn ∈ Z
2 be such that kn√

n logn
→

k ∈ R
2. If the corridor free flights span the plane, then

lim
m,n−m→∞m logm (n − m) log(n − m)μ{Sm = jm,Sn = jm + kn−m} = ϕ(j)ϕ(k).

The proof consists of repeating twice the same integral transformations as in the proof
of the local limit theorem (again see the proof of Theorem 4.2 in [23] for details; we note,
however, that the claim of Theorem 4.2 in [23] contains a misprint, in fact it ought to be
analogous with that of Theorem 21).

Theorem 22 The invariant (infinite) measure of the Lorentz process dμ̃ = 〈v,n(q)〉dqdv

(where dq is the arclength measure on the boundary of infinitely many scatterers) is ergodic
i.e. for any invariant set A either μ̃(A) = 0 or μ̃(X̃ \ A) = 0.

This follows from recurrence and [21], where the author showed the equivalence between
recurrence and the ergodicity of the infinite measure (see also [19]).
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